Graphs with maximal irregularity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximal total irregularity of some connected graphs

The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

متن کامل

the maximal total irregularity of some connected graphs

the total irregularity of a graph g is defined as 〖irr〗_t (g)=1/2 ∑_(u,v∈v(g))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈v(g). in this paper by using the gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

متن کامل

The irregularity and total irregularity of Eulerian graphs

For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all ‎connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.

متن کامل

Force Irregularity Following Maximal Effort

Irregularities in force output are present throughout human movement and can impair task performance. We investigated the presence of a large force discontinuity (after-peak reduction, APR) that appeared immediately following peak in maximal effort ramp contractions performed with the thumb adductor and ankle dorsiflexor muscles in 25 young adult participants (76% males, 24% females; M age 24.4...

متن کامل

Non-regular graphs with minimal total irregularity

The total irregularity of a simple undirected graphG is defined as irrt(G) = 1 2 ∑ u,v∈V (G) |dG(u)− dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). Obviously, irrt(G) = 0 if and only if G is regular. Here, we characterize the non-regular graphs with minimal total irregularity and thereby resolve the recent conjecture by Zhu, You and Yang [18] about the lower bound on the minimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2014

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1407315a